Further calculus

Integrate functions of the form $(1 + x^2)^{-1}$ and $(1 - x^2)^{-\frac{1}{2}}$ and be able to choose trigonometric substitutions to integrate associated functions.

Q1, (STEP III, 2006, Q2)

Let

$$I = \int_{-\frac{1}{\alpha}\pi}^{\frac{1}{2}\pi} \frac{\cos^2 \theta}{1 - \sin \theta \sin 2\alpha} \, d\theta \quad \text{and} \quad J = \int_{-\frac{1}{\alpha}\pi}^{\frac{1}{2}\pi} \frac{\sec^2 \theta}{1 + \tan^2 \theta \cos^2 2\alpha} \, d\theta$$

where $0 < \alpha < \frac{1}{4}\pi$.

- (i) Show that $I = \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \frac{\cos^2 \theta}{1 + \sin \theta \sin 2\alpha} d\theta$ and hence that $2I = \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \frac{2}{1 + \tan^2 \theta \cos^2 2\alpha} d\theta$.
- (ii) Find J.
- (iii) By considering $I \sin^2 2\alpha + J \cos^2 2\alpha$, or otherwise, show that $I = \frac{1}{2}\pi \sec^2 \alpha$.
- (iv) Evaluate I in the case $\frac{1}{4}\pi < \alpha < \frac{1}{2}\pi$.

Q2, (STEP III, 2011, Q4)

The following result applies to any function f which is continuous, has positive gradient and satisfies f(0) = 0:

$$ab \le \int_0^a f(x) dx + \int_0^b f^{-1}(y) dy,$$
 (*)

where f^{-1} denotes the inverse function of f, and $a \ge 0$ and $b \ge 0$.

- (i) By considering the graph of y = f(x), explain briefly why the inequality (*) holds.
 In the case a > 0 and b > 0, state a condition on a and b under which equality holds.
- (ii) By taking $f(x) = x^{p-1}$ in (*), where p > 1, show that if $\frac{1}{p} + \frac{1}{q} = 1$ then

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$
.

Verify that equality holds under the condition you stated above.

(iii) Show that, for $0 \le a \le \frac{1}{2}\pi$ and $0 \le b \le 1$,

$$ab \leqslant b \arcsin b + \sqrt{1 - b^2} - \cos a$$
.

Deduce that, for $t \ge 1$,

$$\arcsin(t^{-1}) \geqslant t - \sqrt{t^2 - 1}$$
.

ALevelMathsRevision.com

Q3, (STEP III, 2017, Q6)

In this question, you are not permitted to use any properties of trigonometric functions or inverse trigonometric functions.

The function T is defined for x > 0 by

$$T(x) = \int_0^x \frac{1}{1+u^2} du$$
,

and $T_{\infty} = \int_{0}^{\infty} \frac{1}{1 + u^2} du$ (which has a finite value).

(i) By making an appropriate substitution in the integral for T(x), show that

$$T(x) = T_{\infty} - T(x^{-1}).$$

(ii) Let $v = \frac{u+a}{1-au}$, where a is a constant. Verify that, for $u \neq a^{-1}$,

$$\frac{\mathrm{d}v}{\mathrm{d}u} = \frac{1+v^2}{1+u^2} \,.$$

Hence show that, for a > 0 and $x < \frac{1}{a}$,

$$T(x) = T\left(\frac{x+a}{1-ax}\right) - T(a)$$
.

Deduce that

$$T(x^{-1}) = 2T_{\infty} - T\left(\frac{x+a}{1-ax}\right) - T(a^{-1})$$

and hence that, for b > 0 and $y > \frac{1}{b}$,

$$T(y) = 2T_{\infty} - T\left(\frac{y+b}{by-1}\right) - T(b).$$

(iii) Use the above results to show that $T(\sqrt{3}) = \frac{2}{3}T_{\infty}$ and $T(\sqrt{2} - 1) = \frac{1}{4}T_{\infty}$.

ALevelMathsRevision.com

Q4, (STEP III, 2014, Q4)

(i) Let

$$I = \int_0^1 ((y')^2 - y^2) dx$$
 and $I_1 = \int_0^1 (y' + y \tan x)^2 dx$,

where y is a given function of x satisfying y = 0 at x = 1. Show that $I - I_1 = 0$ and deduce that $I \ge 0$. Show further that I = 0 only if y = 0 for all x ($0 \le x \le 1$).

(ii) Let

$$J = \int_0^1 ((y')^2 - a^2 y^2) \, \mathrm{d}x \,,$$

where a is a given positive constant and y is a given function of x, not identically zero, satisfying y = 0 at x = 1. By considering an integral of the form

$$\int_0^1 (y' + ay \tan bx)^2 \, \mathrm{d}x,$$

where b is suitably chosen, show that $J \ge 0$. You should state the range of values of a, in the form a < k, for which your proof is valid.

In the case a = k, find a function y (not everywhere zero) such that J = 0.

Q5, (STEP I, 2004, Q4)

Differentiate $\sec t$ with respect to t.

(i) Use the substitution
$$x = \sec t$$
 to show that
$$\int_{\sqrt{2}}^{2} \frac{1}{x^3 \sqrt{x^2 - 1}} dx = \frac{\sqrt{3 - 2}}{8} + \frac{\pi}{24}$$
.

(ii) Determine
$$\int \frac{1}{(x+2)\sqrt{(x+1)(x+3)}} dx.$$

(iii) Determine
$$\int \frac{1}{(x+2)\sqrt{x^2+4x-5}} \, \mathrm{d}x.$$

Q6, (STEP I, 2009, Q7)

Show that, for any integer m,

$$\int_0^{2\pi} e^x \cos mx \, dx = \frac{1}{m^2 + 1} (e^{2\pi} - 1).$$

(i) Expand $\cos(A+B) + \cos(A-B)$. Hence show that

$$\int_0^{2\pi} e^x \cos x \cos 6x \, dx = \frac{19}{650} (e^{2\pi} - 1).$$

(ii) Evaluate $\int_0^{2\pi} e^x \sin 2x \sin 4x \cos x \, dx.$